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Part III: Objects, algorithms, 
programs

Computing with numbers and other objects

Since the introduction of computers four or five decades ago the meaning of the word  computation has kept 

expanding. Whereas "computation" traditionally implied "numbers", today we routinely compute pictures, texts,  

and many other types of objects. When classified according to the types of objects being processed, three types of  

computer  applications  stand  out  prominently  with  respect  to  the  influence  they  had  on  the  development  of  

computer science.

The first generation involved numerical computing, applied mainly to scientific and technical problems. Data to 

be processed consisted almost exclusively of numbers, or sets of numbers with a simple structure, such as vectors  

and  matrices.  Programs  were  characterized  by  long execution  times  but  small  sets  of  input  and  output  data. 

Algorithms were more important than data structures, and many new numerical algorithms were invented. Lasting 

achievements of this first phase of computer applications include systematic study of numerical algorithms, error  

analysis, the concept of program libraries, and the first high-level programming languages, Fortran and Algol.

The second generation, hatched by the needs of commercial data processing, leads to the development of many 

new data structures. Business applications thrive on record keeping and updating, text and form processing, and 

report generation: there is not much computation in the numeric sense of the word, but a lot of reading, storing,  

moving,  and  printing  of  data.  In  other  words,  these  applications  are  data  intensive  rather  than  computation 

intensive.  By  focusing  attention  on  the  problem  of  efficient  management  of  large,  dynamically  varying  data 

collections, this phase created one of the core disciplines of computer science: data structures, and corresponding 

algorithms for managing data, such as searching and sorting.

We are  now  in  a  third  generation of  computer  applications,  dominated  by  computing with  geometric  and 

pictorial objects. This change of emphasis was triggered by the advent of computers with bitmap graphics. In turn,  

this leads to the widespread use of sophisticated user interfaces that depend on graphics, and to a rapid increase in 

applications such as computer-aided design (CAD) and image processing and pattern recognition (in medicine,  

cartography,  robot  control).  The  young discipline  of  computational  geometry  has  emerged in  response  to  the 

growing  importance  of  processing  geometric  and  pictorial  objects.  It  has  created  novel  data  structures  and 

algorithms, some of which are presented in Parts V and VI.

Our selection of algorithms in Part III reflects the breadth of applications whose history we have just sketched. 

We choose the simplest types of objects from each of these different domains of computation and some of the most  

concise and elegant algorithms designed to process them. The study of typical small programs is an essential part of  

programming. A large part of computer science consists of the knowledge of how typical problems can be solved;  

and the best way to gain such knowledge is to study the main ideas that make standard programs work.
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Algorithms and programs

Theoretical computer science treats algorithm as a formal concept, rigorously defined in a number of ways, such 

as Turing machines or lambda calculus. But  in the context of  programming,  algorithm is  typically used as an 

intuitive  concept  designed  to  help  people  express  solutions  to  their  problems.  The  formal  counterpart  of  an 

algorithm is a procedure or program (fragment) that expresses the algorithm in a formally defined programming 

language. The process of formalizing an algorithm as a program typically requires many decisions: some superficial  

(e.g. what type of statement is chosen to set up a loop), some of great practical consequence (e.g. for a given range 

of values of n, is the algorithm's asymptotic complexity analysis relevant or misleading?).

We present algorithms in whatever notation appears to convey the key ideas most clearly, and we have a clear 

preference for pictures. We present programs in an extended version of Pascal; readers should have little difficulty  

translating this into any programming language of their choice. Mastery of interesting small programs is the best  

way to get started in computer science. We encourage the reader to work the examples in detail.

The literature on algorithms. The development of new algorithms has been proceeding at a very rapid pace 

for several decades, and even a specialist can only stay abreast with the state of the art in some subfield, such as  

graph algorithms,  numerical  algorithms,  or  geometric  algorithms.  This  rapid development is  sure  to continue 

unabated, particularly in the increasingly important  field  of  parallel  algorithms.  The cutting  edge of algorithm 

research is published in several journals that specialize in this research topic, including the Journal of Algorithms 

and  Algorithmica.  This  literature  is  generally  accessible  only  after  a  student  has  studied  a  few  textbooks  on 

algorithms, such as [AHU 75], [Baa 88], [BB 88], [CLR 90], [GB 91], [HS 78], [Knu 73a], [Knu 81], [Knu 73b],  

[Man 89], [Meh 84a], [Meh 84b], [Meh 84c], [RND 77], [Sed 88], [Wil 86], and [Wir 86].
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8. Truth values, the data 
type 'set', and bit acrobatics

Learning objectives:

• truth values, bits

• boolean variables and functions

• bit sum: four clever algorithms compared

• trade-off between time and space

Bits and boolean functions

The English mathematician George Boole (1815–1864) became one of the founders of symbolic logic when he 

endeavored to express logical arguments in mathematical form. The goal of his 1854 book The Laws Of Thought 

was "to investigate the laws of those operations of the mind by which reasoning is performed; to give expression to  

them in the symbolic language of calculus. …"

Truth values or boolean values, named in Boole's honor, possess the smallest possible useful domain: the binary  

domain, represented by yes/no, 1/0, true/false,  T/F. In the late 1940s, as the use of binary arithmetic became 

standard and as information theory came to regard a two-valued quantity as the natural unit of information, the 

concise term bit was coined as an abbreviation of "binary digit". A bit, by any other name, is truly a primitive data 

element—at a sufficient level of detail, (almost) everything that happens in today's computers is bit manipulation.  

Just  because bits  are  simple data quantities  does not  mean that  processing them is  necessarily simple,  as we 

illustrate in this section by presenting some clever and efficient bit manipulation algorithms.

Boolean variables range  over  boolean values,  and  boolean functions take  boolean  arguments and produce 

boolean results. There are only four distinct boolean functions of a single boolean variable, among which 'not' is the  

most useful: It yields the complement of its argument (i.e. turns 0 into 1, and vice versa). The other three are the 

identity and the functions that yield the constants 0 and 1. There are 16 distinct boolean functions of two boolean 

variables, of which several are frequently used, in particular: 'and', 'or'; their negations 'nand', 'nor'; the exclusive-or  

'xor'; and the implication '⊃ '. These functions are defined as follows:

a b a and b a or b a nand b a nor b a xor b a ⊃  b

0 0 0 0 1 1 0 1

0 1 0 1 1 0 1 1

1 0 0 1 1 0 1 0

1 1 1 1 0 0 0 1

Bits are the atomic data elements of today's computers, and most programming languages provide a data type 

'boolean'  and built-in operators  for 'and',  'or',  'not'.  To avoid the necessity for boolean expressions to be fully 
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parenthesized, precedence relations are defined on these operators: 'not' takes precedence over 'and', which takes 

precedence over 'or'. Thus

x and not y or not x and y  ⇔  ((x and (not y)) or ((not x) and y)).

What can you compute with boolean variables? Theoretically everything, since large finite domains can always 

be represented by a sufficient number of boolean variables: 16-bit integers, for example, use 16 boolean variables to  

represent the integer domain –215 .. 215–1. Boolean variables are often used for program optimization in practical 

problems where efficiency is important.

Swapping and crossovers: the versatile exclusive-or

Consider the swap statement x :=: y, which we use to abbreviate the cumbersome triple:  t := x;  x := y;  y := t.  

On computers that provide bitwise boolean operations on registers, the swap operator :=: can be implemented 

efficiently without the use of a temporary variable.

The operator exclusive-or, often abbreviated as 'xor', is defined as

x xor y  =  x and not y or not x and y.

It yields true iff exactly one of its two arguments is true.

The bitwise boolean operation z:= x op y on n-bit registers: x[1 .. n], y[1 .. n], z[1 .. n], is defined as

for  i := 1  to  n  do  z[i] := x[i] op y[i]

With a bitwise exclusive-or, the swap x :=: y can be programmed as

x := x xor y;  y := x xor y;  x := x xor y;

It still takes three statements, but no temporary variable. Given that registers are usually in short supply, and  

that a logical operation on registers is typically just as fast as an assignment, the latter code is preferable. Exhibit 

8.1 traces the execution of this code on two 4-bit  registers and shows exhaustively that the swap is performed  

correctly for all possible values of x and y.

Exhibit 8.1: Trace of registers x and y under repeated exclusive-or operations.

Exercise: planar circuits without crossover of wires

The code above has yet another interpretation: How should we design a logical circuit that effects a logical 

crossover of two wires x and y while avoiding any physical crossover? If we had an 'xor' gate, the circuit diagram  

shown in Exhibit 8.2 would solve the problem. 'xor' gates must typically be realized as circuits built from simpler  

primitives, such as 'and', 'or', 'not'. Design a circuit consisting of 'and', 'or', 'not' gates only, which has the effect of  

crossing wires x and y while avoiding physical crossover.

Exhibit 8.2: Three exclusive-or gates in series interchange values on two wires.
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The bit sum or "population count"

A computer word is a fixed-length sequence of bits, call it a bit vector. Typical word lengths are 16, 32, or 64, and 

most instructions in most computers operate on all the bits in a word at the same time, in parallel. When efficiency  

is of great importance,  it is worth exploiting to the utmost the bit  parallelism built  into the hardware of most  

computers. Today's programming languages often fail to refer explicitly to hardware features such as registers or 

words in memory, but it is usually possible to access individual bits if one knows the representation of integers or 

other data types. In this section we take the freedom to drop the constraint of strong typing built into Pascal and 

other modern languages. We interpret the content of a register or a word in memory as it suits the need of the  

moment: a bit string, an integer, or a set.

We are well aware of the dangers of such ambiguous interpretations: Programs become system and compiler  

dependent, and thus lose portability. If such ambiguity is localized in a single, small procedure, the danger may be  

kept under control, and the gain in efficiency may outweigh these drawbacks. In Pascal, for example, the type 'set' is 

especially well suited to operate at the bit level. 'type s = set of (a, b, c)' consists of the 23 sets that can be formed 

from the three elements a, b, c. If the basic set M underlying the declaration of

type S = set of M

consists of n elements, then S has 2n elements. Usually, a value of type S is internally represented by a vector of n 

contiguously allocated bits, one bit for each element of the set M. When computing with values of type S we operate 

on single bits using the boolean operators. The union of two sets of type S is obtained by applying bitwise 'or', the  

intersection by applying bitwise 'and'. The complement of a set is obtained by applying bitwise 'not'.

Example
M = {0, 1, … , 7}

Set                                 Bit vector

7       6       5       4       3       2       1        0  Elements

s1 {0, 3, 4, 6} 0 1 0 1 1 0 0 1

s2 {0, 1, 4, 5} 0 0 1 1 0 0 1 1

s1 ∪  s2 {0, 1, 3, 4, 5, 6} 0 1 1 1 1 0 1 1

s1 ∩ s2 {0, 4} 0 0 0 1 0 0 0 1

¬ s1 {1, 2, 5, 7} 1 0 1 0 0 1 1 0

Integers are represented on many small computers by 16 bits. We assume that a type 'w16', for "word of length  

16", can be defined. In Pascal, this might be

type  w16 = set of 0 .. 15;

A variable of type 'w16' is a set of at most 16 elements represented as a vector of 16 bits.

Asking for the number of elements in a set s is therefore the same as asking for the number of 1's in the bit 

pattern that represents s. The operation that counts the number of elements in a set, or the number of 1's in a word,  

is  called  the  population  count or  bit  sum. The  bit  sum  is  frequently  used  in  inner  loops  of  combinatorial 

calculations, and many a programmer has tried to make it as fast as possible. Let us look at four of these tries, 

beginning with the obvious.
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Inspect every bit
function bitsum0(w: w16): integer;

var  i, c: integer;

begin

c := 0;

for  i := 0  to  15  do  { inspect every bit }

if  i ∈  w {w[i] = 1}  then  c := c + 1;  { count the ones}
return(c)

end;

Skip the zeros

Is there a faster way? The following algorithm looks mysterious and tricky. The expression w ∩ (w – 1) contains 

both an intersection operation '∩', which assumes that its operands are sets, and a subtraction, which assumes that 

w is an integer:

c := 0;

while  w ≠ 0  do  { c := c + 1;  w := w ∩ (w – 1) } ;

Such mixing makes sense only if we can rely on an implicit assumption on how sets and integers are represented 

as bit vectors. With the usual binary number representation, an example shows that when the body of the loop is  

executed once, the rightmost 1 of w is replaced by 0:

w 1000100011001000

w – 1     1000100011000111

w ∩ (w – 1) 1000100011000000

This clever code seems to look at the 1's only and skip over all the 0's: Its loop is executed only as many times as  

there are 1's in the word. This savings is worthwhile for long, sparsely populated words (few 1's and many 0's).

In the statement w := w ∩  (w – 1), w is used both as an integer (in w – 1) and as a set (as an operand in the  

intersection operation '∩').  Strongly typed languages, such as Pascal, do not allow such mixing of types. In the 

following function 'bitsum1',  the  conversion routines  'w16toi'  and 'itow16'  are  introduced  to  avoid  this  double 

interpretation of w. However, 'bitsum1' is of interest only if such a type conversion requires no extra time (i.e. if one 

knows how sets and integers are represented internally).

function bitsum1(w: w16): integer;

var  c, i: integer;  w0, w1: w16;

begin

w0 := w;  c := 0;

while  w0 ≠ Ø  { empty set }  do  begin

i := w16toi(w0);  { w16toi converts type w16 to integer }

i := i – 1;

w1 := itow16(i);  { itow16 converts type integer to w16 }

w0 := w0 ∩ w1;  { intersection of two sets }
c := c + 1

end;

return(c)

end;
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Most languages  provide some facility for permitting  purely formal type conversions that result  in no work:  

'EQUIVALENCE' statements in Fortran, 'UNSPEC' in PL/1, variant records in Pascal. Such "conversions" are done 

merely by interpreting the contents of a given storage location in different ways.

Logarithmic bit sum

For a computer of word length n, the following algorithm computes the bit sum of a word w running through its  

loop only ⎡log2  n⎤ times,  as  opposed  to  n  times  for  'bitsum0'  or  up  to  n  times  for  'bitsum1'.  The  following 

description holds for arbitrary n but is understood most easily if n = 2h.

The logarithmic bit sum works on the familiar principle of divide-and-conquer. Let w denote a word consisting  

of n = 2h bits, and let S(w) be the bit sum of the bit string w. Split w into two halves and denote its left part by wL  

and its right part by wR. The bit sum obviously satisfies the recursive equation S(w) = S(wL) + S(wR). Repeating 

the same argument on the substrings wL and wR, and, in turn, on the substrings they create, we arrive at a process 

to compute S(w). This process terminates when we hit substrings of length 1 [i.e. substrings consisting of a single  

bit b; in this case we have S(b) = b]. Repeated halving leads to a recursive decomposition of w, and the bit sum is  

computed by a tree of n – 1 additions as shown below for n = 4 (Exhibit 8.3).

Exhibit 8.3: Logarithmic bit sum algorithm as a result of divide-and-conquer.

This approach of treating both parts of w symmetrically and repeated halving leads to a computation of depth h 

= ⎡log2 n⎤ . To obtain a logarithmic bit sum, we apply the additional trick of performing many additions in parallel.  

Notice that the total length of all operands on the same level is always n. Thus we can pack them into a single word  

and, if we arrange things cleverly, perform all the additions at the same level in one machine operation, an addition  

of two n-bit words.

Exhibit 8.4 shows how a number of the additions on short strings are carried out by a single addition on long 

strings. S(w) now denotes not only the bit sum but also its binary representation, padded with zeros to the left so as 

to have the appropriate length. Since the same algorithm is being applied to wL and wR, and since wL and wR are of 

equal  length,  exactly  the same operations are  performed at  each stage on wL and its  parts  as  on wR and its 

corresponding parts. Thus if the operations of addition and shifting operate on words of length n, a single one of  

these operations can be interpreted as performing many of the same operations on the shorter parts into which w 

has been split. This logarithmic speedup works up to the word length of the computer. For n = 64, for example,  

recursive splitting generates six levels and translates into six iterations of the loop below.
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Exhibit 8.4: All processes generated by divide-and-conquer are performed in parallel  

on shared data registers.

 The algorithm is best explained with an example; we use n = 8.

w7 w6 w5 w4 w3 w2 w1 w0

w 1 1 0 1 0 0 0 1

First, extract the even-indexed bits w6 w4 w2 w0 and place a zero to the left of each bit to obtain weven. The newly 

inserted zeros are shown in small type.

w6 w4 w2 w0

weven
0 1 0 1 0 0 0 1

Next, extract the odd-indexed bits w7 w5 w3 w1, shift them right by one place into bit positions w6 w4 w2 w0, and 

place a zero to the left of each bit to obtain wodd.

w7 w5 w3 w1

wodd
0 1 0 0 0 0 0 0

Then, numerically add weven and wodd, considered as integers written in base 2, to obtain w'.

w'7 w'6 w'5 w'4 w'3 w'2 w'1 w'0

weven 0 1 0 1 0 0 0 1

wodd 0 1 0 0 0 0 0 0

w' 1 0 0 1 0 0 0 1

Next, we index not bits, but pairs of bits, from right to left: (w'1 w'0) is the zeroth pair, (w'5 w'4) is the second pair. 

Extract the even-indexed pairs w'5 w'4 and w'1 w'0, and place a pair of zeros to the left of each pair to obtain w'even.
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w'5 w'4 w'1 w'0

w'even
0 0 0 1 0 0 0 1

Next, extract the odd-indexed pairs w'7 w'6  and w'3 w'2 , shift them right by two places into bit positions w'5  w'4 

and w'1 w'0 , respectively, and insert a pair of zeros to the left of each pair to obtain w'odd.

w'7 w'6 w'3 w'2

w'odd
0 0 1 0 0 0 0 0

Numerically, add w'even and w'odd to obtain w".

w"7 w"6 w"5 w"4 w"3 w"2 w"1 w"0

w" 0 0 1 1 0 0 0 1

Next, we index quadruples of bits, extract the quadruple w"3 w"2 w"1 w"0, and place four zeros to the left to obtain 

w"even.

w"3 w"2 w"1 w"0

w"even
0 0 0 0 0 0 0 1

Extract the quadruple w"7 w"6 w"5 w"4, shift it right four places into bit positions w"3 w"2 w"1 w"0, and place four 

zeros to the left to obtain w"odd.

w"7 w"6 w"5 w"4

w"odd
0 0 0 0 0 0 1 1

Finally, numerically add w"even and w"odd to obtain w''' = (00000100), which is the representation in base 2 of the 

bit sum of w (4 in this example). The following function implements this algorithm.

Logarithmic bit sum implemented for a 16-bit computer:

In 'bitsum2' we apply addition and division operations directly to variables of type 'w16' without performing the 

type conversions that would be necessary in a strongly typed language such as Pascal.

function bitsum2(w: w16): integer;

const mask[0] = '0101010101010101'; 

mask[1] = '0011001100110011';

mask[2] = '0000111100001111';

mask[3] = '0000000011111111';

var  i, d: integer;  weven, wodd: w16;

begin

d := 2;

for  i := 0  to  3  do  begin

weven := w ∩ mask[i];

w := w / d;  { shift w right 2
i
 bits }

d := d
2
;

wodd := w ∩ mask[i];

w := weven + wodd
end;

return(w)

end;
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Trade-off between time and space: the fastest algorithm

Are there  still  faster algorithms for computing the bit  sum of  a word? Is  there  an  optimal algorithm? The 

question of optimality of algorithms is important, but it can be answered only in special cases. To show that an  

algorithm is optimal, one must specify precisely the class of algorithms allowed and the criterion of optimality. In 

the case of bit sum algorithms, such specifications would be complicated and largely arbitrary, involving specific  

details of how computers work.

However, we can make a plausible argument that the following bit sum algorithm is the fastest possible, since it  

uses a table lookup to obtain the result in essentially one operation. The penalty for this speed is an extravagant use  

of memory space (2n locations), thereby making the algorithm impractical except for small values of n. The choice 

of an algorithm almost always involves trade-offs among various desirable properties, and the better an algorithm is  

from one aspect, the worse it may be from another.

The algorithm is based on the idea that we can precompute the solutions to all possible questions, store the  

results, and then simply look them up when needed. As an example, for n = 3, we would store the information

Word Bit sum

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 2

1 0 0 1

1 0 1 2

1 1 0 2

1 1 1 3

What is the fastest way of looking up a word w in this table? Under assumptions similar to those used in the  

preceding algorithms, we can interpret w as an address of a memory cell that contains the bit sum of w, thus giving  

us an algorithm that requires only one memory reference.

Table lookup implemented for a 16-bit computer:

function bitsum3(w: w16): integer;

const  c: array[0 .. 65535] of integer = [0, 1, 1, 2, 1, 2, 2, 3, 

… , 15, 16];

begin  return(c[w])  end;

In concluding this example, we notice the variety of algorithms that exist for computing the bit sum, each one  

based on entirely different principles, giving us a different trade-off between space and time. 'bitsum0' and 'bitsum3' 

solve the problem by "brute force" and are simple to understand: 'bitsum0' looks at each bit and so requires much 

time; 'bitsum3' stores the solution for each separate case and thus requires much space. The logarithmic bit sum 

algorithm  is  an  elegant  compromise:  efficient  with  respect  to  both  space  and  time,  it  merely  challenges  the 

programmer's wits.

Exercises

1. Show that there are exactly 16 distinct boolean functions of two variables.

2. Show that each of the boolean functions 'nand' and 'nor' is universal in the following sense: Any boolean 

function f(x, y) can be written as a nested expression involving only 'nands', and it can also be written using 

only 'nors'. Show that no other boolean function of two variables is universal.
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3. Consider the logarithmic bit sum algorithm, and show that any strategy for splitting w (not just the halving 

split) requires n – 1 additions.
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