
This book is licensed under a Creative Commons Attribution 3.0 License

Part III: Objects, algorithms,
programs

Computing with numbers and other objects

Since the introduction of computers four or five decades ago the meaning of the word computation has kept

expanding. Whereas "computation" traditionally implied "numbers", today we routinely compute pictures, texts,

and many other types of objects. When classified according to the types of objects being processed, three types of

computer applications stand out prominently with respect to the influence they had on the development of

computer science.

The first generation involved numerical computing, applied mainly to scientific and technical problems. Data to

be processed consisted almost exclusively of numbers, or sets of numbers with a simple structure, such as vectors

and matrices. Programs were characterized by long execution times but small sets of input and output data.

Algorithms were more important than data structures, and many new numerical algorithms were invented. Lasting

achievements of this first phase of computer applications include systematic study of numerical algorithms, error

analysis, the concept of program libraries, and the first high-level programming languages, Fortran and Algol.

The second generation, hatched by the needs of commercial data processing, leads to the development of many

new data structures. Business applications thrive on record keeping and updating, text and form processing, and

report generation: there is not much computation in the numeric sense of the word, but a lot of reading, storing,

moving, and printing of data. In other words, these applications are data intensive rather than computation

intensive. By focusing attention on the problem of efficient management of large, dynamically varying data

collections, this phase created one of the core disciplines of computer science: data structures, and corresponding

algorithms for managing data, such as searching and sorting.

We are now in a third generation of computer applications, dominated by computing with geometric and

pictorial objects. This change of emphasis was triggered by the advent of computers with bitmap graphics. In turn,

this leads to the widespread use of sophisticated user interfaces that depend on graphics, and to a rapid increase in

applications such as computer-aided design (CAD) and image processing and pattern recognition (in medicine,

cartography, robot control). The young discipline of computational geometry has emerged in response to the

growing importance of processing geometric and pictorial objects. It has created novel data structures and

algorithms, some of which are presented in Parts V and VI.

Our selection of algorithms in Part III reflects the breadth of applications whose history we have just sketched.

We choose the simplest types of objects from each of these different domains of computation and some of the most

concise and elegant algorithms designed to process them. The study of typical small programs is an essential part of

programming. A large part of computer science consists of the knowledge of how typical problems can be solved;

and the best way to gain such knowledge is to study the main ideas that make standard programs work.

Algorithms and Data Structures 67 A Global Text

http://creativecommons.org/licenses/by/3.0/

7. Syntax analysis

Algorithms and programs

Theoretical computer science treats algorithm as a formal concept, rigorously defined in a number of ways, such

as Turing machines or lambda calculus. But in the context of programming, algorithm is typically used as an

intuitive concept designed to help people express solutions to their problems. The formal counterpart of an

algorithm is a procedure or program (fragment) that expresses the algorithm in a formally defined programming

language. The process of formalizing an algorithm as a program typically requires many decisions: some superficial

(e.g. what type of statement is chosen to set up a loop), some of great practical consequence (e.g. for a given range

of values of n, is the algorithm's asymptotic complexity analysis relevant or misleading?).

We present algorithms in whatever notation appears to convey the key ideas most clearly, and we have a clear

preference for pictures. We present programs in an extended version of Pascal; readers should have little difficulty

translating this into any programming language of their choice. Mastery of interesting small programs is the best

way to get started in computer science. We encourage the reader to work the examples in detail.

The literature on algorithms. The development of new algorithms has been proceeding at a very rapid pace

for several decades, and even a specialist can only stay abreast with the state of the art in some subfield, such as

graph algorithms, numerical algorithms, or geometric algorithms. This rapid development is sure to continue

unabated, particularly in the increasingly important field of parallel algorithms. The cutting edge of algorithm

research is published in several journals that specialize in this research topic, including the Journal of Algorithms

and Algorithmica. This literature is generally accessible only after a student has studied a few textbooks on

algorithms, such as [AHU 75], [Baa 88], [BB 88], [CLR 90], [GB 91], [HS 78], [Knu 73a], [Knu 81], [Knu 73b],

[Man 89], [Meh 84a], [Meh 84b], [Meh 84c], [RND 77], [Sed 88], [Wil 86], and [Wir 86].

68

This book is licensed under a Creative Commons Attribution 3.0 License

8. Truth values, the data
type 'set', and bit acrobatics

Learning objectives:

• truth values, bits

• boolean variables and functions

• bit sum: four clever algorithms compared

• trade-off between time and space

Bits and boolean functions

The English mathematician George Boole (1815–1864) became one of the founders of symbolic logic when he

endeavored to express logical arguments in mathematical form. The goal of his 1854 book The Laws Of Thought

was "to investigate the laws of those operations of the mind by which reasoning is performed; to give expression to

them in the symbolic language of calculus. …"

Truth values or boolean values, named in Boole's honor, possess the smallest possible useful domain: the binary

domain, represented by yes/no, 1/0, true/false, T/F. In the late 1940s, as the use of binary arithmetic became

standard and as information theory came to regard a two-valued quantity as the natural unit of information, the

concise term bit was coined as an abbreviation of "binary digit". A bit, by any other name, is truly a primitive data

element—at a sufficient level of detail, (almost) everything that happens in today's computers is bit manipulation.

Just because bits are simple data quantities does not mean that processing them is necessarily simple, as we

illustrate in this section by presenting some clever and efficient bit manipulation algorithms.

Boolean variables range over boolean values, and boolean functions take boolean arguments and produce

boolean results. There are only four distinct boolean functions of a single boolean variable, among which 'not' is the

most useful: It yields the complement of its argument (i.e. turns 0 into 1, and vice versa). The other three are the

identity and the functions that yield the constants 0 and 1. There are 16 distinct boolean functions of two boolean

variables, of which several are frequently used, in particular: 'and', 'or'; their negations 'nand', 'nor'; the exclusive-or

'xor'; and the implication '⊃ '. These functions are defined as follows:

a b a and b a or b a nand b a nor b a xor b a ⊃ b

0 0 0 0 1 1 0 1

0 1 0 1 1 0 1 1

1 0 0 1 1 0 1 0

1 1 1 1 0 0 0 1

Bits are the atomic data elements of today's computers, and most programming languages provide a data type

'boolean' and built-in operators for 'and', 'or', 'not'. To avoid the necessity for boolean expressions to be fully

Algorithms and Data Structures 69 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Truth values, the data type 'set', and bit acrobatics

parenthesized, precedence relations are defined on these operators: 'not' takes precedence over 'and', which takes

precedence over 'or'. Thus

x and not y or not x and y ⇔ ((x and (not y)) or ((not x) and y)).

What can you compute with boolean variables? Theoretically everything, since large finite domains can always

be represented by a sufficient number of boolean variables: 16-bit integers, for example, use 16 boolean variables to

represent the integer domain –215 .. 215–1. Boolean variables are often used for program optimization in practical

problems where efficiency is important.

Swapping and crossovers: the versatile exclusive-or

Consider the swap statement x :=: y, which we use to abbreviate the cumbersome triple: t := x; x := y; y := t.

On computers that provide bitwise boolean operations on registers, the swap operator :=: can be implemented

efficiently without the use of a temporary variable.

The operator exclusive-or, often abbreviated as 'xor', is defined as

x xor y = x and not y or not x and y.

It yields true iff exactly one of its two arguments is true.

The bitwise boolean operation z:= x op y on n-bit registers: x[1 .. n], y[1 .. n], z[1 .. n], is defined as

for i := 1 to n do z[i] := x[i] op y[i]

With a bitwise exclusive-or, the swap x :=: y can be programmed as

x := x xor y; y := x xor y; x := x xor y;

It still takes three statements, but no temporary variable. Given that registers are usually in short supply, and

that a logical operation on registers is typically just as fast as an assignment, the latter code is preferable. Exhibit

8.1 traces the execution of this code on two 4-bit registers and shows exhaustively that the swap is performed

correctly for all possible values of x and y.

Exhibit 8.1: Trace of registers x and y under repeated exclusive-or operations.

Exercise: planar circuits without crossover of wires

The code above has yet another interpretation: How should we design a logical circuit that effects a logical

crossover of two wires x and y while avoiding any physical crossover? If we had an 'xor' gate, the circuit diagram

shown in Exhibit 8.2 would solve the problem. 'xor' gates must typically be realized as circuits built from simpler

primitives, such as 'and', 'or', 'not'. Design a circuit consisting of 'and', 'or', 'not' gates only, which has the effect of

crossing wires x and y while avoiding physical crossover.

Exhibit 8.2: Three exclusive-or gates in series interchange values on two wires.

70

This book is licensed under a Creative Commons Attribution 3.0 License

The bit sum or "population count"

A computer word is a fixed-length sequence of bits, call it a bit vector. Typical word lengths are 16, 32, or 64, and

most instructions in most computers operate on all the bits in a word at the same time, in parallel. When efficiency

is of great importance, it is worth exploiting to the utmost the bit parallelism built into the hardware of most

computers. Today's programming languages often fail to refer explicitly to hardware features such as registers or

words in memory, but it is usually possible to access individual bits if one knows the representation of integers or

other data types. In this section we take the freedom to drop the constraint of strong typing built into Pascal and

other modern languages. We interpret the content of a register or a word in memory as it suits the need of the

moment: a bit string, an integer, or a set.

We are well aware of the dangers of such ambiguous interpretations: Programs become system and compiler

dependent, and thus lose portability. If such ambiguity is localized in a single, small procedure, the danger may be

kept under control, and the gain in efficiency may outweigh these drawbacks. In Pascal, for example, the type 'set' is

especially well suited to operate at the bit level. 'type s = set of (a, b, c)' consists of the 23 sets that can be formed

from the three elements a, b, c. If the basic set M underlying the declaration of

type S = set of M

consists of n elements, then S has 2n elements. Usually, a value of type S is internally represented by a vector of n

contiguously allocated bits, one bit for each element of the set M. When computing with values of type S we operate

on single bits using the boolean operators. The union of two sets of type S is obtained by applying bitwise 'or', the

intersection by applying bitwise 'and'. The complement of a set is obtained by applying bitwise 'not'.

Example
M = {0, 1, … , 7}

Set Bit vector

7 6 5 4 3 2 1 0 Elements

s1 {0, 3, 4, 6} 0 1 0 1 1 0 0 1

s2 {0, 1, 4, 5} 0 0 1 1 0 0 1 1

s1 ∪ s2 {0, 1, 3, 4, 5, 6} 0 1 1 1 1 0 1 1

s1 ∩ s2 {0, 4} 0 0 0 1 0 0 0 1

¬ s1 {1, 2, 5, 7} 1 0 1 0 0 1 1 0

Integers are represented on many small computers by 16 bits. We assume that a type 'w16', for "word of length

16", can be defined. In Pascal, this might be

type w16 = set of 0 .. 15;

A variable of type 'w16' is a set of at most 16 elements represented as a vector of 16 bits.

Asking for the number of elements in a set s is therefore the same as asking for the number of 1's in the bit

pattern that represents s. The operation that counts the number of elements in a set, or the number of 1's in a word,

is called the population count or bit sum. The bit sum is frequently used in inner loops of combinatorial

calculations, and many a programmer has tried to make it as fast as possible. Let us look at four of these tries,

beginning with the obvious.

Algorithms and Data Structures 71 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Truth values, the data type 'set', and bit acrobatics

Inspect every bit
function bitsum0(w: w16): integer;

var i, c: integer;

begin

c := 0;

for i := 0 to 15 do { inspect every bit }

if i ∈ w {w[i] = 1} then c := c + 1; { count the ones}
return(c)

end;

Skip the zeros

Is there a faster way? The following algorithm looks mysterious and tricky. The expression w ∩ (w – 1) contains

both an intersection operation '∩', which assumes that its operands are sets, and a subtraction, which assumes that

w is an integer:

c := 0;

while w ≠ 0 do { c := c + 1; w := w ∩ (w – 1) } ;

Such mixing makes sense only if we can rely on an implicit assumption on how sets and integers are represented

as bit vectors. With the usual binary number representation, an example shows that when the body of the loop is

executed once, the rightmost 1 of w is replaced by 0:

w 1000100011001000

w – 1 1000100011000111

w ∩ (w – 1) 1000100011000000

This clever code seems to look at the 1's only and skip over all the 0's: Its loop is executed only as many times as

there are 1's in the word. This savings is worthwhile for long, sparsely populated words (few 1's and many 0's).

In the statement w := w ∩ (w – 1), w is used both as an integer (in w – 1) and as a set (as an operand in the

intersection operation '∩'). Strongly typed languages, such as Pascal, do not allow such mixing of types. In the

following function 'bitsum1', the conversion routines 'w16toi' and 'itow16' are introduced to avoid this double

interpretation of w. However, 'bitsum1' is of interest only if such a type conversion requires no extra time (i.e. if one

knows how sets and integers are represented internally).

function bitsum1(w: w16): integer;

var c, i: integer; w0, w1: w16;

begin

w0 := w; c := 0;

while w0 ≠ Ø { empty set } do begin

i := w16toi(w0); { w16toi converts type w16 to integer }

i := i – 1;

w1 := itow16(i); { itow16 converts type integer to w16 }

w0 := w0 ∩ w1; { intersection of two sets }
c := c + 1

end;

return(c)

end;

72

This book is licensed under a Creative Commons Attribution 3.0 License

Most languages provide some facility for permitting purely formal type conversions that result in no work:

'EQUIVALENCE' statements in Fortran, 'UNSPEC' in PL/1, variant records in Pascal. Such "conversions" are done

merely by interpreting the contents of a given storage location in different ways.

Logarithmic bit sum

For a computer of word length n, the following algorithm computes the bit sum of a word w running through its

loop only ⎡log2 n⎤ times, as opposed to n times for 'bitsum0' or up to n times for 'bitsum1'. The following

description holds for arbitrary n but is understood most easily if n = 2h.

The logarithmic bit sum works on the familiar principle of divide-and-conquer. Let w denote a word consisting

of n = 2h bits, and let S(w) be the bit sum of the bit string w. Split w into two halves and denote its left part by wL

and its right part by wR. The bit sum obviously satisfies the recursive equation S(w) = S(wL) + S(wR). Repeating

the same argument on the substrings wL and wR, and, in turn, on the substrings they create, we arrive at a process

to compute S(w). This process terminates when we hit substrings of length 1 [i.e. substrings consisting of a single

bit b; in this case we have S(b) = b]. Repeated halving leads to a recursive decomposition of w, and the bit sum is

computed by a tree of n – 1 additions as shown below for n = 4 (Exhibit 8.3).

Exhibit 8.3: Logarithmic bit sum algorithm as a result of divide-and-conquer.

This approach of treating both parts of w symmetrically and repeated halving leads to a computation of depth h

= ⎡log2 n⎤ . To obtain a logarithmic bit sum, we apply the additional trick of performing many additions in parallel.

Notice that the total length of all operands on the same level is always n. Thus we can pack them into a single word

and, if we arrange things cleverly, perform all the additions at the same level in one machine operation, an addition

of two n-bit words.

Exhibit 8.4 shows how a number of the additions on short strings are carried out by a single addition on long

strings. S(w) now denotes not only the bit sum but also its binary representation, padded with zeros to the left so as

to have the appropriate length. Since the same algorithm is being applied to wL and wR, and since wL and wR are of

equal length, exactly the same operations are performed at each stage on wL and its parts as on wR and its

corresponding parts. Thus if the operations of addition and shifting operate on words of length n, a single one of

these operations can be interpreted as performing many of the same operations on the shorter parts into which w

has been split. This logarithmic speedup works up to the word length of the computer. For n = 64, for example,

recursive splitting generates six levels and translates into six iterations of the loop below.

Algorithms and Data Structures 73 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Truth values, the data type 'set', and bit acrobatics

Exhibit 8.4: All processes generated by divide-and-conquer are performed in parallel

on shared data registers.

 The algorithm is best explained with an example; we use n = 8.

w7 w6 w5 w4 w3 w2 w1 w0

w 1 1 0 1 0 0 0 1

First, extract the even-indexed bits w6 w4 w2 w0 and place a zero to the left of each bit to obtain weven. The newly

inserted zeros are shown in small type.

w6 w4 w2 w0

weven
0 1 0 1 0 0 0 1

Next, extract the odd-indexed bits w7 w5 w3 w1, shift them right by one place into bit positions w6 w4 w2 w0, and

place a zero to the left of each bit to obtain wodd.

w7 w5 w3 w1

wodd
0 1 0 0 0 0 0 0

Then, numerically add weven and wodd, considered as integers written in base 2, to obtain w'.

w'7 w'6 w'5 w'4 w'3 w'2 w'1 w'0

weven 0 1 0 1 0 0 0 1

wodd 0 1 0 0 0 0 0 0

w' 1 0 0 1 0 0 0 1

Next, we index not bits, but pairs of bits, from right to left: (w'1 w'0) is the zeroth pair, (w'5 w'4) is the second pair.

Extract the even-indexed pairs w'5 w'4 and w'1 w'0, and place a pair of zeros to the left of each pair to obtain w'even.

74

This book is licensed under a Creative Commons Attribution 3.0 License

w'5 w'4 w'1 w'0

w'even
0 0 0 1 0 0 0 1

Next, extract the odd-indexed pairs w'7 w'6 and w'3 w'2 , shift them right by two places into bit positions w'5 w'4

and w'1 w'0 , respectively, and insert a pair of zeros to the left of each pair to obtain w'odd.

w'7 w'6 w'3 w'2

w'odd
0 0 1 0 0 0 0 0

Numerically, add w'even and w'odd to obtain w".

w"7 w"6 w"5 w"4 w"3 w"2 w"1 w"0

w" 0 0 1 1 0 0 0 1

Next, we index quadruples of bits, extract the quadruple w"3 w"2 w"1 w"0, and place four zeros to the left to obtain

w"even.

w"3 w"2 w"1 w"0

w"even
0 0 0 0 0 0 0 1

Extract the quadruple w"7 w"6 w"5 w"4, shift it right four places into bit positions w"3 w"2 w"1 w"0, and place four

zeros to the left to obtain w"odd.

w"7 w"6 w"5 w"4

w"odd
0 0 0 0 0 0 1 1

Finally, numerically add w"even and w"odd to obtain w''' = (00000100), which is the representation in base 2 of the

bit sum of w (4 in this example). The following function implements this algorithm.

Logarithmic bit sum implemented for a 16-bit computer:

In 'bitsum2' we apply addition and division operations directly to variables of type 'w16' without performing the

type conversions that would be necessary in a strongly typed language such as Pascal.

function bitsum2(w: w16): integer;

const mask[0] = '0101010101010101';

mask[1] = '0011001100110011';

mask[2] = '0000111100001111';

mask[3] = '0000000011111111';

var i, d: integer; weven, wodd: w16;

begin

d := 2;

for i := 0 to 3 do begin

weven := w ∩ mask[i];

w := w / d; { shift w right 2
i
 bits }

d := d
2
;

wodd := w ∩ mask[i];

w := weven + wodd
end;

return(w)

end;

Algorithms and Data Structures 75 A Global Text

http://creativecommons.org/licenses/by/3.0/

8. Truth values, the data type 'set', and bit acrobatics

Trade-off between time and space: the fastest algorithm

Are there still faster algorithms for computing the bit sum of a word? Is there an optimal algorithm? The

question of optimality of algorithms is important, but it can be answered only in special cases. To show that an

algorithm is optimal, one must specify precisely the class of algorithms allowed and the criterion of optimality. In

the case of bit sum algorithms, such specifications would be complicated and largely arbitrary, involving specific

details of how computers work.

However, we can make a plausible argument that the following bit sum algorithm is the fastest possible, since it

uses a table lookup to obtain the result in essentially one operation. The penalty for this speed is an extravagant use

of memory space (2n locations), thereby making the algorithm impractical except for small values of n. The choice

of an algorithm almost always involves trade-offs among various desirable properties, and the better an algorithm is

from one aspect, the worse it may be from another.

The algorithm is based on the idea that we can precompute the solutions to all possible questions, store the

results, and then simply look them up when needed. As an example, for n = 3, we would store the information

Word Bit sum

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 2

1 0 0 1

1 0 1 2

1 1 0 2

1 1 1 3

What is the fastest way of looking up a word w in this table? Under assumptions similar to those used in the

preceding algorithms, we can interpret w as an address of a memory cell that contains the bit sum of w, thus giving

us an algorithm that requires only one memory reference.

Table lookup implemented for a 16-bit computer:

function bitsum3(w: w16): integer;

const c: array[0 .. 65535] of integer = [0, 1, 1, 2, 1, 2, 2, 3,

… , 15, 16];

begin return(c[w]) end;

In concluding this example, we notice the variety of algorithms that exist for computing the bit sum, each one

based on entirely different principles, giving us a different trade-off between space and time. 'bitsum0' and 'bitsum3'

solve the problem by "brute force" and are simple to understand: 'bitsum0' looks at each bit and so requires much

time; 'bitsum3' stores the solution for each separate case and thus requires much space. The logarithmic bit sum

algorithm is an elegant compromise: efficient with respect to both space and time, it merely challenges the

programmer's wits.

Exercises

1. Show that there are exactly 16 distinct boolean functions of two variables.

2. Show that each of the boolean functions 'nand' and 'nor' is universal in the following sense: Any boolean

function f(x, y) can be written as a nested expression involving only 'nands', and it can also be written using

only 'nors'. Show that no other boolean function of two variables is universal.

76

This book is licensed under a Creative Commons Attribution 3.0 License

3. Consider the logarithmic bit sum algorithm, and show that any strategy for splitting w (not just the halving

split) requires n – 1 additions.

Algorithms and Data Structures 77 A Global Text

http://creativecommons.org/licenses/by/3.0/

